The Effects of Look-Alike Avatar Voice and Facial Expression Intensity on Emotional Recognition and User Perception

Trinity Suma Columbia University trs2163@columbia.edu

Oyewole Oyekoya Hunter College oo700@hunter.cuny.edu

What is a LOOK-AIKe Avatar?

Pictured: My look-alike avatar!

Reated Work

• What features contribute to avatar realism and user perception? Lip sync alone

 uncanny valley

 effect \rightarrow low perceived realism , Full-body and full-face animation → high perceived realism (1)

Look-Alike Avatars

Rected Work

Avatar Voices & Emotion Recognition

 Voice similarity increased users' performance, competence, relatedness, and immersion in CodeBreakers (2)

 Audio presence increased participants' ability to identify an avatar's emotion (4)

Related Work VR in Bystander Scenarios

 Customized VR prompted more user intervention than the non-customized VR (3) Participants think they would have experienced greater empathy and immersion if the avatars were photorealistic (3)

My Gog

 Investigate the role of a look-alike avatar's vocal and facial expression intensity on users' perceived realism and emotional recognition using a virtual bystander scenario

 <u>So what</u>: Virtual reality has become increasingly present in industry training. Understanding these roles will help developers ensure that VR training is as effective as possible.

Methods

- Software Reallusion Character Creator iClone
- Survey via Qualtrics 9 variations of each character 2 question types Aggression/Assertion Realism

Addressor Avata

Emotion Recognition: Aggression

(Median/Mean)

Face	High intensity	Medium intensity	Low intensity
Voice			
High intensity	4 / 3.78	3/2.92	3/2.88
Medium intensity	2/2.38	2 / 2.12	2 / 1.81
Low intensity	2/2.04	1.5 / 1.77	1 / 1.15

Emotion Recognition: Assertion

(Median/Mean)

Face	High intensity	Medium intensity	Low intensity
Voice			
High intensity	4 / 3.77	4 / 3.35	3 / 3.31
Medium intensity	2/2.27	2 / 1.77	2/2.12
Low intensity	1.5 / 1.73	1/1.58	1 / 1.5

Perceived Realism: Aggression

<u>(Median/Mean)</u>

Face	High intensity	Medium intensity	Low intensity
Voice			
High intensity	3/3.04	2 / 2.31	2/2.08
Medium intensity	3/2.96	3 / 2.73	2/2.23
Low intensity	3 / 2.81	3/2.96	2/2.42

Perceived Realism: Assertion

(Median/Mean)

Face	High intensity	Medium intensity	Low intensity
Voice			
High intensity	3/2.69	3 / 2.62	2.5 / 2.62
Medium intensity	2/2.73	2/2.62	2/2.5
Low intensity	2/2.08	3 / 2.69	3 / 2.78

Challenges & Future Work

Limitations

Majority of participants between 18-24 years old
Many incomplete responses had to be removed
Received feedback of survey crashing at the end

Analyze statistical significance data

Non-parametric Friedman test
Add in new survey results

THANK YOU

Contact: trs2163@columbia.edu

References

- 1. Frampton-Clerk, A., & Oyekoya, O. (2022, November). Investigating the perceived realism of the other user's look-alike avatars. In Proceedings of the 28th ACM Symposium on Virtual Reality Software and Technology (pp. 1-5).
- 2. Kao, D., Ratan, R., Mousas, C., & Magana, A. J. (2021). The effects of a self-similar avatar voice in educational games. Proceedings of the ACM on Human-Computer Interaction, 5(CHI PLAY), 1-28.
- 3. McEvoy, K. A., Oyekoya, O., Ivory, A. H., & Ivory, J. D. (2016, March). Through the eyes of a bystander: The promise and challenges of VR as a bullying prevention tool. In 2016 IEEE Virtual Reality (VR) (pp. 229-230). IEEE.
- 4. Mukashev, D., Kairgaliyev, M., Alibekov, U., Oralbayeva, N., & Sandygulova, A. (2021, August). Facial expression generation of 3D avatar based on semantic analysis. In 2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN) (pp. 89-94). IEEE.