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Abstract

Complex interactions occur in virtual reality systems, requiring the
modelling of next-generation attention models to obtain believable
virtual human animations. This paper presents a saliency model
that is neither domain nor task specific, which is used to animate the
gaze of virtual characters. A critical question is addressed: What
types of saliency attract attention in virtual environments and how
can they be weighted to drive an avatar’s gaze? Saliency effects
were measured as a function of their total frequency. Scores were
then generated for each object in the field of view within each frame
to determine the most salient object within the virtual environment.
This paper compares the resulting saliency gaze model to tracked
gaze, in which avatars’ eyes are controlled by head-mounted mobile
eye-trackers worn by human subjects, random gaze model informed
by head-orientation for saccade generation, and static gaze featur-
ing non-moving centered eyes. Results from the evaluation experi-
ment and graphical analysis demonstrate a promising saliency gaze
model that is not just believable and realistic but also target-relevant
and adaptable to varying tasks. Furthermore, the saliency model
does not use any prior knowledge of the content or description of
the virtual scene.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation I.6.8 [Simulation and Model-
ing]: Types of Simulation—Animation

Keywords: Character animation, gaze modeling, visual attention,
target saliency, behavioural realism, facial animation

1 Introduction

This research aims to construct gaze models for virtual characters
that mimic real human eyes. In virtual scenes, salient stimuli such
as the changing location and orientation of objects attract attention
providing a method of allocating attention to objects within vir-
tual environments. In order to mimic real human eyes, a better
understanding of how humans allocate visual attention is needed.
Humans cannot attend to all things at once, thus our attention ca-
pability is used to focus our vision on selected regions of interest.
Our capacity for information processing is limited, therefore visual
scene inspection is performed with particular attention to selected
stimuli of interest. A good definition of visual attention was given
by James [James 1890]: ”Every one knows what attention is. It is
the taking possession by the mind, in clear and vivid form, of one
out of what seem several simultaneously possible objects or trains
of thought. ... It implies withdrawal from some things in order to
deal effectively with others”.
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This definition implies that visual attention modelling is relevant
to the objective of obtaining better scene content understanding as
employed in neurobiological models of visual attention [Itti et al.
1998; Stentiford 2007]. In natural scenes, attentional selections are
influenced by complex interactions between top down, goal driven
control and bottom up, stimulus driven control [Itti et al. 1998].
Understanding of how visual targets compete for attention is critical
in understanding how gaze is allocated to targets within a visual
scene. While attention has been shown to be influenced heavily
by top-down components refers to visual inspection with a task in
mind [Yarbus 1967] (e.g., looking for John Doe in a crowd), it
has also been shown to be strongly influenced from the bottom-
up by the contents of the visual input enabling the development of
computational models. One such model [Itti et al. 1998] has been
used to synthesize realistic gaze motions in avatars [Itti et al. 2003]
but it is unclear how the model will perform in a virtual scene where
colour and texture features are deliberately tweaked to be unnatural
(e.g. Arts). Furthermore, the authors admit that a strong limitation
of their approach is its computational cost and suggest that it may
be promising to leverage information from virtual scenes to detect
salient features with little or no image processing. This research
draws support from that suggestion.

Virtual scenes are digital 3D representations of natural scenes and
contain a set of objects, such as items and avatars that move and
interact in 3D space. Virtual reality scenes make use of vector
graphics such as shapes or polygons to represent objects in com-
puter graphics. These objects can have intrinsic saliency in terms
of their proximity, eccentricity, orientation and velocity while their
extrinsic saliency is given by its interest to the avatar such as the fix-
ation duration. Proximity relates to the euclidean distance between
the user’s eye from the object. Eccentricity is based on the angu-
lar distance of objects from the center of gaze (head-centric vector)
allocating attention to objects under direct scrutiny than objects in
the user’s peripheral vision. Velocity is based on the object’s speed
across the user’s visual field allocating attention to objects mov-
ing quickly across the user’s gaze than slow-moving or still objects.
Orientation is based on objects’ differences in rotation with atten-
tion allocated to objects with higher rotation speed. Saliency can
thus be inferred from the user’s actions such as a waving avatar
hand (orientation), a moving car (velocity) or a close object (prox-
imity) under scrutiny (eccentricity). Previous work has used some
of these saliency parameters to vary the level of detail rendering of
an object [Luebke 2003] and to simulate gaze attention behaviours
for crowd animations [Grillon and Thalmann 2009]. In this paper,
the intrinsic saliency of an object is computed from the location
and/or orientation of the object in 3D space. The following section
reviews the literature on previous gaze models and approaches to
modelling attention. Section 3 describes initial work done to ob-
tain the data used to construct the gaze model. Section 4 presents a
technical description of the saliency gaze model. Section 5 presents
the evaluation of the model, while sections 6 and 7 presents the dis-
cussion and conclusions respectively.

2 Related Work

2.1 Previous Gaze Models

Gaze models have been developed for the generation of naturalistic
eye-movement for virtual characters. Previous studies have inves-



tigated dyadic conversation using a gaze model that is informed
by interactional states (e.g. speaking and listening) [Lee et al.
2002; Vinayagamoorthy et al. 2004] and has been found to sig-
nificantly improve the perceived quality of avatar-mediated com-
munication [Garau et al. 2003]. Most eye gaze models have been
based on extensive psychological studies of the functions of gaze
behaviour such as the exchange of social signals [Argyle and Cook
1976]. Hence gaze patterns are associated with certain cognitive
states. Lee et al [Lee et al. 2002] used an eye saccade statistical
model during talking and listening based on empirical eye track-
ing data. These values implement statistical generalisations about
human gaze behaviour derived from empirical studies of saccades
and/or statistical models of eye-tracking data. Peters et al [Peters
et al. 2005] presents a model for a virtual character (referred to
as embodied conversation agent) that is able to start, maintain and
end a conversation based on the level of interest and engagement
of the other virtual character. The algorithm integrates the listen-
ing and speaking state into a model able to sustain a conversation
between two virtual characters by monitoring the level of interest
of each character. Gaze models can be driven by cognitive opera-
tions [Khullar and Badler 2001] and generates gaze behaviour that
reflects the agent’s inner thoughts, including continuous gaze fol-
lowing and gaze aversion [Lee et al. 2007]. Queiroz and Barros
models expressive gaze by examining eye behaviour in different af-
fective states from computer graphics movies [Queiroz et al. 2008].
Eye motion has also been generated given a head motion sequence
as input, by statistically modelling the coupling between gaze and
head movement [Ma and Deng 2009], in addition to synchroniza-
tion with content of utterance and state of conversation [Masuko
and Hoshino 2007].

Current gaze models suffer from three drawbacks: (i) assumptions
are made about the gaze patterns that relate to certain social signals
and cognitive state with limited understanding of how they fit into
a temporal dimension, (ii) detecting cognitive states tends to add
another layer of input which is not readily available in computer
graphics systems, (iii) the focus of these gaze models have been
on believability and realism while target relevancy has been largely
ignored. These models tend to be tested in scenarios where the
avatar is engaged in a conversation with a non-moving target that
is straight ahead or in a multi-party conversation where there are
two or more other avatars as targets [Gu and Badler 2006]. This
research is concerned with single or multi-party interaction where
targets can be other avatars and lifeless objects alike.

2.2 Attention Modelling

The approach used in this paper draws support from previous re-
search in visual attention modelling on static images and dynamic
video scenes. Based on the feature integration theory [Treisman
and Gelade 1980] derived from visual search experiments, Koch
and Ullmans framework [Koch and Ullman 1985] for simulating
human visual attention focuses on the idea that the control struc-
ture underlying visual attention needs to represent such locations
within a topographic saliency map, especially given that the pur-
pose of visual attention is to focus computational resources on a
specific, conspicuous or salient region within a scene. Multiple im-
age features such as colour, orientation and intensity are combined
to form a saliency map that reflects areas of attention. In the same
way, an object’s intrinsic saliency (defined in [Findlay and Walker
1999]) can be derived from parameters such as its proximity, ec-
centricity, orientation and velocity of the objects in a virtual reality
scene. Computation of the intrinsic saliency determines the spatial
coding of fixations in the virtual scene. As in research on images,
the question of which saliency parameter is more important at any
point in time is dependent on the spatial clustering of objects and
the complexity of interaction in the virtual scene.

The extrinsic saliency of an object determines the duration of fix-
ations. It is concerned with coherent fixation distributions during
inspection of a virtual scene. Henderson and Hollingworth [Hen-
derson and Hollingworth 1999] review this area of high-level scene
perception research further, which concerns the role of eye move-
ments in scene perception, focusing on the influence of ongoing
cognitive processing on the position and duration of fixations in a
scene. They speculate on whether ongoing perceptual and semantic
processing accounts for the variability of fixation durations, which
range from less than 50ms to more than 1000ms in a skewed distri-
bution with a mode of about 230ms. The average fixation duration
during scene viewing is also said to be 330ms, with a significant
variability around this mean. Their review of eye movement stud-
ies during scene viewing suggests that fixation positions are non-
random, with fixations clustering on both visually and semantically
informative regions. They also found that the spatial distribution of
the first few fixations in a scene seems to be controlled by the visual
features in the scene and the global (not local) semantic character-
istics of the scene. As viewing progresses and local regions are
fixated and semantically analyzed, positions of later fixations come
to be controlled by both the visual and semantic characteristics of
those local regions. The length of time the eyes remain in a given
region is immediately affected by both characteristics. Presented in
this paper is a plausible model driven by the controlling user’s head
orientation, which is used to determine the extrinsic saliency (i.e.
fixation duration) of an object in a virtual reality scene.

Previous research leads to the hypothesis that the eye is attracted to
regions of a virtual scene that convey what is thought at the time
to be the most important information for scene interpretation. The
intrinsic saliency of an object in a virtual scene determines the spa-
tial distribution of fixations, inferred from continuous interaction
within the virtual scene. The extrinsic saliency drives the tempo-
ral coding of fixations (i.e. duration), thus presenting a plausible
and coherent saliency gaze model. The approach also implements
a plausible linear interpolation algorithm for the dynamics of the
eyeball.

3 Background Work

An earlier study [Steptoe et al. 2009] was conducted to evaluate
three methods of avatar eye-gaze control (tracked gaze, random
model and static gaze) during an object-focused puzzle scenario
performed between three networked Immersive Collaborative Vir-
tual Environment (ICVE) systems. Twelve participants took part
in this study in a repeated measures experiment where they were
represented by avatars in a shared 3D space. Participants were
able to move freely and manipulate virtual objects within the ICVE
enabling the collection of detailed logs of participants’ behaviour.
Head mounted mobile eye trackers were worn by each participant
which provided the tracked gaze data. Hence this system provides
an ideal platform for investigating gaze behaviour in virtual scenes.
In the second condition, the random model (described below) was
used to drive the avatar’s gaze while they conducted the task. The
ICVE platform is built on OpenSG R⃝, an open source scenegraph
system for interactive 3D graphics applications that contains a col-
lection of nodes in a graph or tree structure with a parent-child ar-
chitecture. Each object within the object puzzled scene is repre-
sented by a node, associated to a geometrical transformation matrix
that contains location and orientation data at any time in the virtual
scene.

3.1 Random Gaze Model

From the outset, the main input to the random model is the scene
database, which stores all the objects within the virtual reality
scene. Algorithm 1 determines the target object by picking ran-



domly from the objects within the field of view. The field of view,
fov is set to 70∘, regarded as 35∘ eccentricity (computed from equa-
tion 1). Saccades and fixations are randomly distributed between
targets within the current field of view. Thus, as users move their
heads, potential targets enter and exit the field of view, and new
saccades and fixations will be generated. Fixation duration on the
objects of interest are determined by a random sampling method
which is varied by the head motion. By seeding the random num-
ber generator to change every 1 second, a uniformly distributed
random number is generated every second. The temporal coding
of fixations is therefore dependent on timing and velocity of head
movement: reduced activity generates fewer saccades with longer
fixations, while rapid motion results in greater numbers of saccades
with shorter fixation times. The random gaze model is thus in-
formed by a user’s current field of view inferred from head ori-
entation to generate eye gaze animation throughout an unfolding
interaction.

Algorithm 1 random model computes target object (ox,oy,oz)

Require: scene database of objects {O1,O2,O3, ...On}
Require: field of view, f ov = 70∘ (i.e. eccentricity, θ ≤ 35∘)
1: for each frame do
2: seed random to 1 second {determines fixation duration}
3: compute avatar’s eye location in world coordinates
4: for each object in the scene database do
5: determine object’s location in world coordinates
6: compute eccentricity, θ {equation 2}
7: compute vertical angle, θv {equation 3}
8: if (θ < 35∘) and (−25∘ < θv < 25∘) then
9: add to list of objects within field of view

10: end if
11: end for
12: pick randomly from objects within field of view
13: aim avatar’s eyes at center of selected target object
14: end for

3.2 Critique of the Random Model

The frequency plots in Figure 1 shows the combined frequencies
of five gaze behaviours (proximity, saccade magnitude, saccade ve-
locity, fixation duration and the eccentricity) from all twelve partic-
ipants. A comparison of tracked gaze with the random gaze model
showed a clear difference between the plots for each gaze param-
eter. The spread of the eccentricity on the random model demon-
strates the randomness of the targets chosen, as compared to the
peakedness of the tracked gaze. The fixation duration plot for the
random gaze model against tracked gaze shows a peak in the ran-
dom gaze model’s fixation durations at the 500ms mark demonstrat-
ing why the model largely underperformed. Therefore, the goal is
to construct a saliency gaze model with a highly-correlated plot to
tracked gaze. A gaussian curve fit of the proximity and eccentricity
of the tracked gaze data is computed from:

y = f (x) =
n

∑
i=1

aie

[
−
(

x−bi
ci

)2
]
, (1)

The Gaussian model is used for fitting peaks, and is given by the
equation 1 where ai are the peak amplitudes, bi are the peak cen-
troids (locations), and ci are related to the peak widths, n is the
number of peaks to fit, and 1 ≤ n ≤ 8. Proximity, P is fitted with
the values a1 = 19.11, a2 = 6.68, b1 = 1.83, b2 = 3.27, c1 = 0.87
and c2 = 1.7. Eccentricity, θ is fitted with the values a1 = 40.13,
a2 = 8.09, b1 = 14.39, b2 =−14.05, c1 = 4.18 and c2 = 40.5.

4 Saliency Gaze Model

The saliency model is designed to adapt to the complex interaction
within the scene. It considers varying avatar behaviour and prop-

erties of objects within the scene. Saliency computation is based
on the likelihood functions generated from section 3.2. The distri-
bution of saliency values and objects of interests are often spatially
biased towards the center of the view point [Melcher and Kowler
2001]. In order to decrease the probability of center bias in the
saliency model, the random model computes the target object on
25% of the time while the saliency model computes the target object
on 75% of occasions. To implement this, a uniformly distributed
random number 0 and 3 is generated and the random model is im-
plemented instead whenever the random number 3 is generated (i.e.
when saliency state equals false as described on line 23 to 27 of
algorithm 2. The probability that the saliency algorithm is used is
thus given by: P(salience) = 3/4.

4.1 Spatial and Temporal Distribution of Fixations

The main input to this model is the scene database, which stores
all the objects within the scene. Algorithm 2 determines the target
object by examining the intrinsic saliences of the objects within the
field of view (35∘ eccentricity).

Algorithm 2 saliency model computes target object (ox,oy,oz)

Require: scene database of objects {O1,O2,O3, ...On}
Require: field of view, f ov = 70∘ (i.e. eccentricity, θ ≤ 35∘)
1: for each frame do
2: include phantom object for head-centric vector in scene database
3: compute elapsed time since previous frame ∆t
4: seed random to 1 second {determines saliency state and fixation duration}
5: compute avatar’s eye location in world coordinates (ex,ey,ez)
6: for each object in the scene database do
7: determine object’s location and orientation in world coordinates
8: compute eccentricity, θ {equation 3}
9: compute vertical angle, θv

10: if (θ < 35∘) and (−25∘ < θv < 25∘) then
11: compute saliency scores for:
12: - change in orientation, ∆q {equation 5}
13: - object’s velocity v {equation 4}
14: - proximity p {equations 1 & 2}
15: - eccentricity θ {equations 1 & 3}
16: compute total saliency score and store in list, A
17: add to list of objects within field of view, B
18: end if
19: end for
20: if (∆tc < 300ms) and (current target object is still within fov) then
21: return current target object’s location {section 3.1}
22: end if
23: if saliency state = true then
24: determine object with highest saliency from list A
25: else {considers less salient objects (in the periphery)}
26: pick randomly from objects within field of view from list B
27: end if
28: aim avatar’s eyes at center of selected target object
29: if previous target ∕= selected target then
30: compute elapsed time since last target changed, ∆tc
31: compute eyeball interpolation {equation 7}
32: end if
33: end for

4.1.1 Intrinsic Saliency Criteria

The saliency gaze model generates eye target based on four intrinsic
saliency of the objects:

1. Given the user’s eye, E = (ex,ey,ez), and the object, Oi =
(ox,oy,oz), the proximity, p is computed from the euclidean
distance between the two 3D points as:

p =
√

(ex−ox)2 +(ey−oy)2 +(ez−oz)2, (2)

The saliency score, Sp of the object’s proximity is also com-
puted from equation 1 where x = p and is normalised by di-
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Figure 1: Comparisons of Gaze Parameters ( — tracked, — random ).

viding by a1 (i.e. peak amplitude) to keep the range between
0 and 1.

2. The eccentricity, θ defined as the magnitude of the dot prod-
uct is computed as:

θ = arccos
(

u ⋅ v
∣u∣∣v∣

)
, (3)

where u = (ux,uy,uz) is the head-centric vector and v =
(vx,vy,vz) is the direction vector of the eye to the object,
(ex,ey,ez)−(ox,oy,oz). The saliency score, Sθ of the object’s
eccentricity is computed from equation 1 where x = θ and is
normalised by dividing by a1 (i.e. peak amplitude).

3. velocity, v is defined as the rate of change of the object’s loca-
tion and is computed as:

v =
∆Oi

∆t
, (4)

where ∆Oi is the euclidean distance between an object’s lo-
cation at time t1 and its location at time t2, and ∆t is the time
interval of the frame duration. The normalised saliency score,
Sv of the object’s velocity is given by v/20 (i.e. a reasonable
maximum speed of 20 feet per second).

4. orientation, ∆q defined as the change in object’s angular po-
sition over time and is computed as:

∆q = 2 arccos(q1
−1.q2) (5)

where quaternions q1 and q2 represent two orientations at time
t1 and t2 respectively. The normalised saliency score, S∆q of
the object’s orientation is given by ∆q/180 (i.e. a reasonable
maximum change in orientation of 180∘).

4.1.2 Saliency Scoring and Fixation Duration

The saliency of each object within the field of view is computed
from a summation of the normalised saliency scores and is used to
guide attention.

SO = Sθ +Sp +Sv +S∆q, (6)

The object with the highest combined saliency score is determined
as the target. The computation of these scores relies on appropriate
normalisation and summation steps in a competitive way to deter-
mine most likely target object to be allocated fixations. The fixation
duration is limited to 300ms as long as the target object remains
within the field of view (in line with Henderson’s average duration
during scene viewing [Henderson and Hollingworth 1999]).

4.2 Eyeball Dynamics

The eyeball is interpolated over 6 frames by fitting to an exponential
velocity curve as presented in Lee et al [Lee et al. 2002; Vinayag-
amoorthy et al. 2004].

y = 14e[−π/4(x−3)2], (7)

where x = f rame{1,2,3,4,5,6}. The eye is moved to intermediate
positions within each frame to produce a smooth movement during
saccades.

5 Experiment

The following experiment evaluates four methods of eye gaze con-
trol across three different scenarios. The four methods of gaze con-
trol were as follows:

1. None: static, centred eyes (N).
2. Random gaze model: as described in section 3.1 (R).
3. Saliency gaze model: as described in section 4 (S).
4. Tracked gaze: reproduction of recorded gaze from an eye

tracker (T).

When operating under condition N (static gaze), the avatar’s eyes
remain focussed directly ahead. In this condition, head-orientation
is relied upon as the primary indicator of visual attention. In con-
dition T (tracked gaze), the avatar’s eyes reproduce a wearer’s eye
movements.

In order to assess the ability of the saliency model to generate natu-
ral and meaningful gaze, it was important to measure performance
in varying scenarios. Therefore, three virtual environments were
designed (figure 2), which aimed to place users in three practi-
cal situations: object manipulation and design (solving a puzzle),
telecommunication (engaging in two-party conversation), and nav-
igation (walking through a large town scene).

5.1 Data Collection

The performance of an expert user of the ICVE system was cap-
tured within a collaborative virtual environment platform [Wolff
et al. 2008] operating at 60fps in an immersive CAVETM -like sys-
tem. Sessions were captured each of the three virtual environments
described above and illustrated in figure 2. During the object-
focused puzzle scenario and the navigation scene, the system op-
erated in single-user mode, while the system operated in multi-
user mode during the conversational scenario, with an avatar rep-
resenting each user engaging in an informal conversation. The user
performed each scene under the four eye gaze control conditions
(N,R,S,T), and engaged in the puzzle, conversation, or navigation,
in a relaxed and natural manner. Following data capture, a replay
tool [Murgia et al. 2008] and Fraps R⃝(Beepa R⃝) were used to create
72 video-clips each of around 15 seconds in duration at a matching
60fps and at a resolution of 592(h)x384(v) to create the stimuli for
the user study.

During all sessions, the user wore a head tracker and held one hand
tracker, while in the tracked gaze (T) sessions only, the user was
also calibrated with a head-mounted mobile eye tracker to drive



Figure 2: Screenshots from the three virtual scenes: object-focussed puzzle (left), conversation with another user represented by an avatar
(center), and navigating through a large town environment.

avatar gaze in real-time. Thus, several means were used to animate
various components of the avatar. Firstly, the avatar’s eyes were an-
imated by the eye tracker (T) or by a gaze model (S,R), or were still
(N). Motion of the head tracker was mapped to the avatar’s head,
and was also used as input to an inverse kinematic model which in-
ferred rotation and posture of the avatar’s body. Similarly, motion
of the hand tracker was used to animate the avatar’s right arm and
hand, which was of particular use to communicate gesture and ex-
pression in the conversation scene. The hand tracker was also used
as an input device in the puzzle scene to manipulate objects. As
the puzzle and navigation scenarios were single-user evaluations,
speech was not featured, and hence the avatar’s mouth remained
closed throughout the capture. In the conversation scene, mouth-
movement of both avatar was animated by a speech detector and
the second avatar’s gaze was always driven by the saliency gaze
model.

The final component of the avatar’s animation were two behavioural
models which generated realistic eyelid kinematics: a ’lid sac-
cade’ model initiated vertical shifts in eyelid position according
to changes in vertical rotation of the eyes, and a blink model an-
imated the rapid closing and opening of the eyes. The lid saccade
model takes eye gaze data as input, and thus was driven by the eye
tracker (condition T) or gaze models (conditions S and R), while it
remained still in condition N. Blinks were generated every 3.5 sec-
onds (17/minute), as the average blink rate for a person at rest as
defined by [Bentivoglio et al. 1997].

5.2 Experimental Design

A balanced design paired comparison test was conducted which re-
quired subjects to judge aspects of the avatar’s behaviour over a
series of paired animations. The subjects were 70 volunteers (prize
draw incentive) who performed the experiment online at their own
machine and in their own time. While the experimental instructions
provided subjects with clear guidance, we chose not to perform con-
trolled lab-based experiments in favour of the online method’s abil-
ity to encompass a range of varying displays and to enable us to
reach more volunteers.

As stated, conditions were N (non-moving static eyes), R (random
gaze model), S (saliency gaze model), and T (tracked gaze), thus
resulting in six unique comparison pairs, and 18 over the three vir-
tual environments. However, in order to negate the influence of
vertical placement (see figure 3), the sequence was repeated with
opposite top/bottom placement and randomised. Subjects were in-
structed to evaluate each of the 36 video pairs by answering three
questions focusing on different aspects of the avatar’s behavior. For
each question, the subject would select Top if they judged the upper
avatar favorably or Bottom if they preferred the lower avatar. Fig-
ure 3 shows the experiment interface and the questions asked. The
questions were designed to extract information regarding Q1) how

Figure 3: Screenshot of experiment interface. The camera was set
to pan and rotate closely around the avatar’s face, thus providing a
varying and clear view as would be the norm in actual use.

involved in the particular scenario (object-focussed puzzle, conver-
sation, or navigation) the avatar appeared to be, Q2) the natural
quality of eye motion, and Q3) the overall realism of the avatar. It
was important to design the experiment to generate data for anal-
ysis which maintained the semantic contexts of the three virtual
environment scenarios. Therefore, while always eliciting metrics
of engagement, Q1’s phrasing varied slightly between three ver-
sions according to the scenario currently under inspection: In which
video does the avatar appear to be more (engaged in the puzzle / en-
gaged in the conversation / interested in its surroundings)? This
framing of Q1 also served to contextualise the following two ques-
tions, which focused on the realism of the eye motion (Q2), and the
overall perception of the avatar’s believability (Q3).

5.3 Analysis

After recording the participants votes on the 36 pairs, a preference
matrix was computed for each of the three scenes based on the vot-
ing results of the 70 subjects. The preference matrices are shown
in Tables 2(a) - puzzle scene, 2(b) - conversation scene, and 2(c)
- navigation scene. The number in each cell denotes the selection
frequency of a specific method when answering one of the three
questions, with 1 point given for each choice. For instance, in table
2(a), ’110’ in the first cell of the final row indicates that condition T
(tracked gaze) was voted a total of 110 times better than condition
N (static gaze) in terms of overall realism (Q3). Correspondingly,
the fourth cell on the first row indicates that condition N was voted
a total of 30 times better than condition T for the same question.
Note that the totals for each such corresponding condition pair sum



to 140 (70 participants and two ratings with reversed vertical posi-
tion).

Prior to performing vote comparisons for the four gaze conditions,
two statistical tests were carried out, proposed by Kendall and
Smith [Kendall and Smith 1940]: 1) coefficient of consistency
(ζ ) for each participant in order to determine whether there was
any intransitive vote, and 2) coefficient of agreement (µ) to see
whether the participants voted for all the pairs in a similar way.
Table 1 shows the averaged coefficient of consistency for all par-
ticipants for each question and scene (S1 - puzzle, S2 - conversa-
tion, S3 - navigation). The coefficient of agreement is also shown
for each question and scene, together with the corresponding chi
square (χ2) value and respective significance value (p) given the
six degrees of freedom. The chi square results indicate that for the
used research questions and samples there is a statistically strong
agreement among experimental subjects.
Table 1: Comparisons of consistency (ζ ) and agreement (µ) test
statistics. Chi square (χ2) and related p values given 6df. Ranking
of conditions for each question and scene also shown.

S#,Q# ζ µ χ2 p, 6 d.f. 1st 2nd 3rd 4th

1,1 0.380 0.079 71.9 <0.001 T S R N
1,2 0.393 0.181 157.1 <0.001 T S R N
1,3 0.384 0.158 137.8 <0.001 T S R N

2,1 0.320 0.123 108.8 <0.001 S T R N
2,2 0.386 0.186 161.4 <0.001 T S R N
2,3 0.393 0.174 151.3 <0.001 T S R N

3,1 0.493 0.253 217.0 <0.001 S R T N
3,2 0.520 0.249 213.5 <0.001 T S R N
3,3 0.459 0.237 203.4 <0.001 T S R N

The results were statistically significant (p<0.001) between the
gaze conditions. However, this does not determine between which
conditions the significances lie. Hence, a series of multiple compar-
ison score tests was performed as described by Ledda et al. [Ledda
et al. 2005] to test the scores of the six pairs of conditions, thereby
establishing where statistical differences lie. Figure 4 illustrates the
significances between the gaze conditions for all scenes and ques-
tions. Conditions are ranked from lowest to highest (left to right)
as established in table 1. Any two conditions that are underlined
by the same line may be considered statistically identical given a
p threshold of 0.05. For instance, the line connecting S and T in
Q3 of the conversation scene indicates that there were no signifi-
cant differences in terms of overall believability between saliency
model and tracked gaze.
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Figure 4: Multiple comparison score for all data. Any conditions
whose scores are underlined are considered statistically similar.
The data captured was plotted in figure 5 for the tracked gaze, ran-
dom model and saliency model. This enabled the comparison of the
gaze conditions in terms of the correlation of the plots. The plots
presented shows the frequencies of five gaze parameters (proxim-
ity, saccade magnitude, saccade velocity, fixation duration and the

eccentricity) for one experienced participant. These plots serve to
support the results from the evaluation experiment, given the lim-
ited data. Generally, the saliency model produced plots that were
highly correlated to the tracked gaze while plots for the random
model consistently underperforms.

6 Discussion

The hypothesis that the perceived realism of the avatar operating
with the saliency model gaze would approach the ratings of the
avatar exhibiting the actual tracked gaze was tested. It was expected
that the avatar would be judged less favourably during the random
model and static gaze conditions. Indeed, average rankings across
scenes and questions indicate the superiority of tracked gaze, fol-
lowed next by the saliency model, random and lastly static gaze.
Overall, the plots (figure 5) for two parameters, saccade magnitude
and velocities across all scenes produced were highly-correlated
(i.e. correlation coefficient, ρT,S ranged between 0.987 to 0.999)
for the tracked gaze and the saliency model, as compared to the
random model’s less-correlated plots. While this overall picture in-
dicates support for the saliency model and original hypothesis, the
evaluation results and the other three parameters (proximity, fixa-
tion duration and eccentricity) must be discussed in terms of each
scenario for a thorough examination.

Given that the saliency model was trained on data collected from
the cubes puzzle scenario, the saliency model was rated signifi-
cantly lower than tracked gaze in terms of eye and overall real-
ism, but identical in terms of engagement. Random model was
rated significantly lower than the saliency model in terms of re-
alism, and the difference between these two conditions is greater
than between tracked and saliency model by 211.1%. Similarly in
terms of engagement, there was no significant difference tracked
gaze and saliency model p=0.87. The plot of the eccentricity in this
scenario shows a peak at the same point for the tracked gaze and
the saliency model as compared to the random model. The proxim-
ity plot on the other hand, peaked at different points, although it’s
clearly more similar than the random model which slightly peaked
at two points. Possible factors that can affect proximity include user
habits such as how the user positioning when interacting with the
cubes in the scenes. However, the plots do show that the saliency
model was more likely to pick targets with the closest eccentricity
and proximity to the tracked gaze. Clearly, more data is needed to
make more sense of the fixation duration plot in this scenario.

The performance of the saliency model was statistically identical
to ratings gained by actual tracked gaze during the conversational
scene, as illustrated in figure 4. This affirms the success of the
saliency model’s approach to scene analysis towards realistic gaze
generation. In this scene, random and static gaze are seen to sig-
nificantly underperform. The peakedness of the eccentricity plot
also demonstrates the viability of the target selection method em-
ployed by the saliency model. However, the proximity data also
demonstrates the spatial clustering of the objects within the room.
It must be noted that saliency model performed rather well in this
scenario, possibly as a result of intense interaction during the con-
versation. Thus, the saliency model makes good use of more in-
trinsic saliency parameters such as the change in orientation and
velocity of the other avatar in the room. This result is promising,
in that the saliency model is more likely to perform well in highly
interactive scenarios.

Finally, results from the navigation scene revealed that the saliency
model was rated significantly higher than all other conditions when
rating engagement. It is likely that ratings of engagement were
likely to be informed by alternative stimuli, such as level of gaze
activity relative to background activity within the scene. Percep-



Table 2: Computed preference matrix for:

(a) object-focussed puzzle scene.

Q# N R S T Total

N
1 - 53 43 35 131
2 - 44 48 31 123
3 - 58 51 30 139

R
1 87 - 58 59 204
2 96 - 30 39 165
3 82 - 35 34 151

S
1 97 82 - 67 246
2 92 110 - 54 256
3 89 105 - 56 250

T
1 105 81 73 - 259
2 109 101 86 - 296
3 110 106 84 - 300

(b) conversation scene.

Q# N R S T Total

N
1 - 63 57 45 165
2 - 58 46 32 136
3 - 59 47 39 145

R
1 82 - 47 66 195
2 87 - 46 58 191
3 86 - 44 55 185

S
1 88 98 - 75 261
2 99 99 - 63 261
3 99 101 - 67 267

T
1 99 79 70 - 248
2 112 87 83 - 282
3 105 90 79 - 274

(c) navigation scene.

Q# N R S T Total

N
1 - 24 21 19 64
2 - 41 39 23 103
3 - 39 36 26 101

R
1 116 - 54 75 245
2 99 - 60 29 188
3 101 - 57 34 192

S
1 119 86 - 84 289
2 101 80 - 29 210
3 104 83 - 30 217

T
1 121 65 56 - 242
2 117 111 111 - 339
3 114 106 110 - 330
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Figure 5: Comparisons of gaze parmeters between scenes.

tions of engagement may have been based on this factor. However,
it must be noted that tracked gaze was rated significantly higher in
terms of eye and overall realism. Despite the larger scale of the
town scene and the wider spatial clustering of objects, the plots do
show that the saliency model was more likely to pick targets with
closer eccentricity and proximity to the tracked gaze. The peaks
in the fixation duration plots at the 500-1000ms mark for the ran-
dom model was clearly reduced for the conversation and navigation
scenes demonstrating the viability of the saliency model’s duration
on target chosen.

7 Conclusions

Overall, the saliency model has yielded remarkably good perfor-
mance on a wide variety of virtual reality scenes. This result was
achieved by modelling the interactions between objects, rather than
attempting to develop a model for specific environments and tasks.

Further ongoing testing of the algorithm includes comparison be-
tween the intrinsic saliency criteria. The intrinsic saliency of the
objects in the virtual scenes tend to interact and more research is
needed into how to bias the relative weights of saliency parame-
ters to tune systems towards specific virtual scenes. Itti et al [Itti
et al. 1998] builds on their framework for interpreting complex nat-
ural scenes and suggest supervised learning as a strategy to bias
the relative weights of the features in order to tune the system to-
wards specific target detection tasks. Competing saliency effects in
the virtual scene depends on the spatial characteristics of the target
scene, hence the question of which saliency effects and when they
should be implemented requires further research. Furthermore, the
evaluation and the plots in figure 5 were not the saliency model’s
best measure of target relevancy. Future work will concentrate on
designing a task to test the ability of the saliency model in detecting
accurate targets within a virtual scene. This should also address a
limitation of the saliency model’s evaluation, in that it was gener-
ated from a single person’s head gaze behaviour.



There are numerous extensions to this work that are worthy of fur-
ther research. An interesting aspect of the work is to extend the
model to allocate attention to surfaces of the objects instead of
the center of the objects, as is currently implemented. Research is
needed into how attention is allocated during object scrutiny. Sec-
ondly, the addition of a realistic head movement model is an ob-
vious extension to the saliency model. Indeed, it may be extended
to fully animate an avatar in its entirety i.e. pointing and locomo-
tion. Obviously, the issue of where an avatar should point or move
to is a separate problem. Thirdly, further studies can also influ-
ence designers on placement of objects within virtual scenes. Cues
can also be used as phantom targets in virtual reality applications,
movies and scenes. Another interesting extension to this work is to
combine this saliency approach with cognitive or interaction-based
approaches.

While this saliency modelling approach is not dependent on cogni-
tive operations, it has the virtue of a straightforward implementa-
tion that can be applied to any virtual scene composed of a scene
database of objects.
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